Surname
Other Names

Centre Number

Candidate Number
2

GCE AS/A level

WJEC CBAC

1321/01

PHYSICS - PH1

Motion, Energy and Charge
A.M. WEDNESDAY, 15 January 2014

1 hour 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will require a

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	9	
2.	11	
3.	17	
4.	13	
5.	10	
6.	8	
7.	12	
Total	80	

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all questions.
Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The total number of marks available for this paper is 80 .
The number of marks is given in brackets at the end of each question or part question.
You are reminded of the necessity for good English and orderly presentation in your answers.
You are reminded to show all working. Credit is given for correct working even when the final answer given is incorrect.

Answer all questions.

1. (a) State what is meant by a vector quantity.
(b) Newton's second law of motion can be expressed by the equation:

$$
\Sigma F=m a
$$

Name the vector quantities in this equation.
\qquad
(c) A ship is being pulled along by cables attached to two tugs as shown. $F_{\text {drag }}$ represents the total drag force that acts on the ship at the instant shown.

(i) Show clearly that the magnitude of the resultant of the forces applied by the tugs is approximately 8000 N .
(ii) Given that $\Sigma F=+2000 \mathrm{~N}$ for the situation shown above, determine the value of $F_{\text {drag }}$.
(d) At a later stage the tension in the cables is changed so that the ship moves forward with
a constant speed of $2.5 \mathrm{~ms}^{-1}$. Calculate the work done on the ship by the tugs in one
minute. [Assume $F_{\text {drag }}$ is the same as that calculated in (c)(ii).]
2. The current I in a metal conductor of cross-sectional area A is given by:

$$
I=n A v e
$$

(a) State the meanings of n and v.
n
v
(b) Show that the equation is correct in terms of units.
\qquad
\qquad
\qquad
\qquad
\qquad
(c) (i) The current in a copper wire is 2.0 A . The wire has a cross-sectional area of $1.2 \mathrm{~mm}^{2}$ and is 5.0 m long. Calculate the time it takes a free electron in the wire to travel from one end to the other. [Take $n_{\text {copper }}=8 \times 10^{28} \mathrm{~m}^{-3}$.]
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) The same current (2.0A) is now passed through a thinner wire of the same length and material. Use the above equation to explain the effect this change would have on the time for an electron to travel from one end to the other.
3. (a) A velocity-time graph is given for a body which is accelerating from rest in a straight line.

(i) What does the shaded area under the graph represent?
(ii) Use the graph to show that, using the usual symbols:

$$
x=\frac{1}{2} a t^{2}
$$

\qquad
\qquad

(b) A ball is thrown vertically upwards and passes a window ledge 0.3s after being released. | It passes the window ledge on its way back down, 1.6 s later. Ignore air resistance. |
| :--- | :--- | \(\begin{gathered}\begin{array}{c}oxiner

only\end{array}

(\end{gathered}\)

(i) Determine the time of flight of the ball.
(ii) Calculate the initial velocity of the ball when it is released.
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) Calculate the height of the window ledge above the ground.
\qquad
\qquad
(c) Draw, on the grid below, a velocity-time graph for the whole of the ball's flight. Include suitable scales on both axes.

(d) In reality, air resistance also acts on the ball. In the spaces provided draw three free body diagrams showing the forces acting on the ball at the positions indicated. Label these forces.

As the ball passes the window ledge travelling upwards
4. (a) Graphs are drawn for a metal wire at constant temperature and for the filament of a lamp. Examiner Current (I)
(i) Complete the boxes, labelling the graphs with the component they represent.
(ii) Suggest reasons for the different shapes of the two graphs.
\qquad
\qquad
(b) X and Y are two lamps.
(i) Lamp X is labelled at $12 \mathrm{~V}, 24 \mathrm{~W}$. Calculate the current in the lamp when it operates at its rated voltage.
\qquad
\qquad
(ii) Lamp Y is labelled at $6 \mathrm{~V}, 4 \mathrm{~A}$. In the following circuit, the values of R_{1} and R_{2} are chosen so that both lamps operate at their rated voltages.

(I) State the reading on the voltmeter. .. [1]
(II) Calculate the pd across R_{2}.
(III) Calculate R_{2}.
(
(IV) Calculate R_{1}.
\qquad
\qquad
\qquad
\qquad
\qquad
5. A resistance strain gauge is a device used to detect very small changes in structures such as buildings and bridges. It consists of a very fine wire glued onto a thin plastic sheet. The gauge is attached to the structure under test, so that when the structure deforms the wire is either stretched or compressed.
(a) If the wire is stretched it gets longer and thinner. Using an equation to justify your answer, explain the effect that stretching the wire has on its resistance.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The diagram shows a typical strain gauge. The wire is of circular cross-section and is arranged in a zig-zag pattern.

(i) Show that the resistance of the wire in the strain gauge is 56Ω. Assume that its diameter is $1.75 \times 10^{-5} \mathrm{~m}$ and its resistivity, $\rho=7.0 \times 10^{-8} \Omega \mathrm{~m}$.

Abstract

(ii) Calculate the change in length needed to produce a 0.1% variation in resistance in the strain gauge opposite. For this calculation, ignore changes in cross-sectional area.

(iii) Suggest why it is beneficial for the wire to be arranged in a zig-zag pattern.
6. (a) State the two conditions necessary for a body to remain in equilibrium.
(b) A school technician installs a projector of weight 20 N and uniform support beam of weight 10 N in a classroom as shown.

(i) Label with an arrow on the diagram, the weight of the beam.
(ii) The manufacturer states that, for safety purposes, the tension, T, in the support cable must not exceed 40 N . Calculate the minimum distance, d, that the technician can place the cable so that the tension in it does not exceed the safe limit.
(iii) Determine the size and direction of the force that the hinge exerts on the beam when the tension in the support cable is at its maximum safe limit.
\qquad
\qquad
7. Wind turbines are used to generate electrical energy. They work by converting as much as possible of the kinetic energy of the air that moves through the area swept out by the blades into electrical energy.

(a) (i) The volume of air arriving on the blades per second is $A u$. Show that the kinetic energy per second (the power, P) arriving is given by:

$$
P=\frac{1}{2} A \rho u^{3}
$$

where ρ is the density of the air.
\qquad
\qquad
\qquad
\qquad
(ii) Use the above equation to complete the following sentences:
(I) The power arriving is proportional to the square of the radius. So doubling the length of the turbine blades will increase the power arriving by a factor of
\qquad
(II) Doubling the wind speed will increase the power arriving by a factor of
\qquad
(iii) The blades cannot remove all the energy arriving from the wind. Having passed through the blades, the moving air has a reduced speed, v, as shown in the diagram. The following equation can be used to approximate the power possessed by this moving air:

$$
P=\frac{1}{2} A \rho v^{3}
$$

Use this equation and the one in (a)(i) to write an expression for the power lost by the air as it passes through the moving blades.
(iv) Suggest why it is not a good idea to erect wind turbines short distances behind each other.
\qquad
(v) A wind turbine has blades of length 2.0 m . Wind of speed $7.0 \mathrm{~ms}^{-1}$ arrives on the blades, which is reduced to $5.0 \mathrm{~ms}^{-1}$ after passing through the blades. Calculate the net power input to the wind turbine. [Assume $\rho_{\text {air }}=1.2 \mathrm{~kg} \mathrm{~m}^{-3}$.]
(b) The calculation in (a)(v) assumes that all the kinetic energy lost from the wind is converted into electrical energy. This is not the case as electrical generators in the wind turbines are not 100% efficient. A significant amount of energy is lost due to friction between the moving parts of the turbine for example. Below is a typical graph of efficiency against the speed of the wind arriving on the blades.

(i) Suggest why no power is generated for wind speeds up to $4.0 \mathrm{~m} \mathrm{~s}^{-1}$.
\qquad
\qquad
(ii) Use the graph to determine the actual power generated by the turbine in (a)(v) in a wind of speed $7.0 \mathrm{~m} \mathrm{~s}^{-1}$.
(c) State why an undersea turbine of the same size as the wind turbine in (a)(v), when placed in a water current of speed $7.0 \mathrm{~ms}^{-1}$, would provide significantly greater power output than the wind turbine.

GCE PHYSICS

TAG FFISEG
Advanced Level / Safon Uwch

Data Booklet

A clean copy of this booklet should be issued to candidates for their use during each GCE Physics examination.

Centres are asked to issue this booklet to candidates at the start of the GCE Physics course to enable them to become familiar with its contents and layout.

Values and Conversions

Avogadro constant	$N_{A}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$
Fundamental electronic charge	$e=1.60 \times 10^{-19} \mathrm{C}$
Mass of an electron	$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$
Molar gas constant	$R=8.31 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
Acceleration due to gravity at sea level	$g=9.81 \mathrm{~ms}^{-2}$
Gravitational field strength at sea level	$g=9.81 \mathrm{Nkg}^{-1}$
Universal constant of gravitation	$G=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$
Planck constant	$h=6.63 \times 10^{-34} \mathrm{Js}$
Boltzmann constant	$k=1.38 \times 10^{-23} \mathrm{JK}^{-1}$
Speed of light in vacuo	$c=3.00 \times 10^{8} \mathrm{~ms}^{-1}$
Permittivity of free space	$\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{Fm}^{-1}$
Permeability of free space	$\mu_{\mathrm{o}}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}$
Stefan constant	$\sigma=5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}$
Wien constant	$W=2.90 \times 10^{-3} \mathrm{mK}$

$$
T / \mathrm{K}=\theta /{ }^{\circ} \mathrm{C}+273 \cdot 15
$$

$$
1 \mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg}
$$

AS

$\rho=\frac{m}{V}$
$P=\frac{W}{t}=\frac{\Delta E}{t}$
$I=\frac{\Delta Q}{\Delta t}$
$I=n A v e$
$R=\frac{\rho l}{A}$
$R=\frac{V}{I}$
$P=I V$
$V=E-I r$
$E=\frac{1}{2} m \nu^{2}$
$F x=\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}$
$c=f \lambda$
$T=\frac{1}{f}$
$\lambda=\frac{a y}{D}$
$d \sin \theta=n \lambda$
$n_{1} v_{1}=n_{2} v_{2}$
$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
$E_{k \text { max }}=h f-\phi$
$\lambda_{\text {max }}=W T^{-1}$
$P=A \sigma T^{4}$
efficiency $=\frac{\text { useful energy transfer }}{\text { total energy input }} \times 100 \%$

Particle Physics

	Leptons			Quarks	
particle $($ symbol $)$	electron $\left(\mathrm{e}^{-}\right)$	electron neutrino $\left(v_{\mathrm{e}}\right)$		up (u)	down (d)
charge (e)	-1	0		$+\frac{2}{3}$	$-\frac{1}{3}$
lepton number	1	1		0	0

A2
$\omega=\frac{\theta}{t}$
$v=\omega r$
$a=\omega^{2} r$
$a=-\omega^{2} x$
$x=A \sin (\omega t+\varepsilon)$
$v=A \omega \cos (\omega t+\varepsilon)$
$T=2 \pi \sqrt{\frac{m}{k}}$
$p=m v$
$Q=m c \Delta \theta$
$p=\frac{h}{\lambda}$
$\frac{\Delta \lambda}{\lambda}=\frac{v}{c}$
$M / \mathrm{kg}=\frac{M_{r}}{1000}$
$p V=n R T$
$p=\frac{1}{3} \rho \overline{c^{2}}$
$U=\frac{3}{2} n R T$
$k=\frac{R}{N_{\mathrm{A}}}$
$W=p \Delta V$
$\Delta U=Q-W$
$C=\frac{Q}{V}$
$C=\frac{\varepsilon_{o} A}{d}$
$U=\frac{1}{2} Q V$
$Q=Q_{0} e^{-t / k c}$
$F=B I l \sin \theta$ and $F=B q v \sin \theta$
$B=\frac{\mu_{o} I}{2 \pi a}$
$B=\mu_{0} n I$
$\Phi=A B \cos \theta$
$V_{\mathrm{rms}}=\frac{V_{0}}{\sqrt{2}}$
$A=\lambda N$
$N=N_{o} e^{-\lambda t}$ or $N=\frac{N_{n}}{2^{s}}$
$A=A_{o} e^{-\lambda t}$ or $A=\frac{A_{o}}{2^{x}}$
$\lambda=\frac{\log _{e} 2}{T_{1 / 2}}$
$E=m c^{2}$

A2

Fields

$$
\begin{array}{llll}
F=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q_{1} Q_{2}}{r^{2}} & E=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r^{2}} & V_{L}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r} & W=q \Delta V_{E}, \\
F=G \frac{M_{1} M_{2}}{r^{2}} & g=\frac{G M}{r^{2}} & V_{g}=\frac{-G M}{r} & W=m \Delta V_{g}
\end{array}
$$

Orbiting Bodies

Centre of mass: $r_{1}=\frac{M_{2}}{M_{1}+M_{2}} d$;
Period of Mutual Orbit: $\quad T=2 \pi \sqrt{\frac{d^{3}}{G\left(M_{1}+M_{2}\right)}}$

Options

A: $\frac{V_{1}}{N_{1}}=\frac{V_{2}}{N_{2}} ; \quad E=-L \frac{\Delta I}{\Delta t} ; \quad X_{\mathrm{L}}=\omega L ; \quad X_{\mathrm{c}}=\frac{1}{\omega C} ; \quad Z=\sqrt{X^{2}+R^{2}} ; \quad Q=\frac{\omega_{0} L}{R}$

B: Electromagnetism and Space-Time

$$
c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}} ; \quad \Delta t=\frac{\Delta \tau}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

B: The Newtonian Revolution

$\frac{1}{T_{\mathrm{P}}}=\frac{1}{T_{\mathrm{E}}}-\frac{1}{t_{\text {opp }}}$
$\frac{1}{T_{\mathrm{P}}}=\frac{1}{T_{\mathrm{E}}}+\frac{1}{t_{\text {inf conj }}}$
$r_{\mathrm{P}}=a(1-\varepsilon)$
$r_{\mathrm{A}}=a(1+\varepsilon)$
$r_{\mathrm{P}} v_{\mathrm{P}}=r_{\mathrm{A}} v_{\mathrm{A}}$
C: $\varepsilon=\frac{\Delta l}{l} ; \quad Y=\frac{\sigma}{\varepsilon} ; \quad \sigma=\frac{F}{A} ; \quad U=\frac{1}{2} \sigma \varepsilon V$
D: $I=I_{0} \exp (-\mu x) ; \quad Z=c \rho$
E: $\frac{\Delta Q}{\Delta t}=-A K \frac{\Delta \theta}{\Delta x} ; \quad U=\frac{K}{\Delta x} \quad \frac{Q_{2}}{Q_{1}}=\frac{T_{2}}{T_{1}} \quad$ Carnot efficiency $=\frac{\left(Q_{1}-Q_{2}\right)}{Q_{1}}$

Mathematical Information

SI multipliers

Multiple	Prefix	Symbol
10^{-18}	atto	a
10^{-15}	femto	f
10^{-12}	pico	p
10^{-9}	nano	n
10^{-6}	micro	μ
10^{-3}	milli	m
10^{-2}	centi	c

Multiple	Prefix	Symbol
10^{3}	kilo	k
10^{6}	mega	M
10^{9}	giga	G
10^{12}	tera	T
10^{15}	peta	P
10^{18}	exa	E
10^{21}	zetta	Z

Areas and Volumes

Area of a circle $=\pi r^{2}=\frac{\pi d^{2}}{4}$
Area of a triangle $=\frac{1}{2}$ base \times height

Solid	Surface area	Volume
rectangular block	$2(l h+h b+l b)$	$l b h$
cylinder	$2 \pi r(r+h)$	$\pi r^{2} h$
sphere	$4 \pi r^{2}$	$\frac{4}{3} \pi r^{3}$

Trigonometry

$$
\begin{gathered}
\sin \theta=\frac{\mathrm{PQ}}{\mathrm{PR}}, \quad \cos \theta=\frac{\mathrm{QR}}{\mathrm{PR}}, \quad \tan \theta=\frac{\mathrm{PQ}}{\mathrm{QR}}, \quad \frac{\sin \theta}{\cos \theta}=\tan \theta \\
\mathrm{PR}^{2}=\mathrm{PQ}^{2}+\mathrm{QR}^{2}
\end{gathered}
$$

Logarithms (A2 only)

[Unless otherwise specified ' ${ }^{\circ}$ 'g' can be $\log _{\mathrm{e}}$ (i.e. \ln) or $\log _{10}$.]
$\log (a b)=\log a+\log b$

$$
\log \left(\frac{a}{b}\right)=\log a-\log b
$$

$\log x^{n}=n \log x$

$$
\log _{\mathrm{e}} e^{k x}=\ln e^{k x}=k x
$$

$\log _{\mathrm{e}} 2=\ln 2=0.693$

